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Observed trend in Earth energy 
imbalance may provide a 
constraint for low climate 
sensitivity models
Gunnar Myhre1*, Øivind Hodnebrog1, Norman Loeb2,  
Piers M. Forster3 

Climate forcings by greenhouse gases and aerosols cause an 
imbalance at the top of the atmosphere between the net 
incoming solar radiation and outgoing longwave radiation from 
earth. This earth energy imbalance has strengthened over the 
period 2001 to 2023 with satellite data. Here, we show that low 
climate sensitivity models fail to reproduce the trend in earth 
energy imbalance, particularly in the individual longwave and 
shortwave contributions to the imbalance trend. The inability to 
produce a strong positive shortwave and strong negative 
longwave earth energy imbalance trend is found to be a robust 
feature in the low climate sensitivity models, especially for 
models with a climate sensitivity below 2.5 kelvin. The negative 
longwave contribution to earth energy imbalance is driven by 
surface temperature increases and is therefore most 
pronounced in high climate sensitivity models, whereas the 
shortwave contribution is generally positive and amplified by 
greater surface warming.

A long- standing research question in climate science is how sensitive 
the climate is to increases in greenhouse gases (GHGs) (1–3). This 
climate sensitivity is taken as the surface temperature rise for a dou-
bling of the CO2 concentration (4, 5). In the latest Intergovernmental 
Panel on Climate Change (IPCC) report, the best estimate of the equi-
librium climate sensitivity (ECS) was assessed as 3°C, with a likely 
range from 2.5° to 4°C and a very likely range from 2° to 5°C (4). How 
clouds change in a warmer world is the main cause of the uncertainty 
in the climate sensitivity (4, 5), with divergent results from observa-
tional studies (6–9). The recent warming over the first one to two 
decades of this century has been used as arguments for low climate 
sensitivity models being most realistic, in particular how feedback 
processes are represented for the recent warming trend (10,  11). 
However, the pattern of observed sea- surface warming in the Pacific 
may have biased some of these findings (12).

The past decades have seen a continued increase in GHGs (4) com-
bined with a reversal of the aerosol effect (13). A reduction in the 
cooling effect of aerosols has thus a warming effect, and the total ef-
fective radiative forcing has been accelerating over the past decades 
(14). The Earth energy imbalance (EEI) is increasing (15, 16) and 
will likely give an accelerated warming over the coming years (17). 
Hodnebrog et al. (16) showed that climate models forced with observed 
sea- surface temperatures (SSTs) reproduce the satellite- retrieved 
strengthening in EEI from the Clouds and the Earth’s Radiant Energy 
System (CERES), but all models have a weaker trend than the observed 
trend. Schmidt et al. (18) showed that the EEI trend, split into longwave 
(LW) and shortwave (SW) trends, differed markedly between the 
CERES satellite and in different configurations of a climate model. 

Here we use a large set of coupled climate models from the Coupled 
Model Intercomparison Project Phase 6 (CMIP6) (19) to illustrate that 
low climate sensitivity models have an EEI trend behavior that is in-
consistent with the satellite- derived EEI trend.

Trend in EEI
Figure 1 shows the EEI over the period with CERES satellite data and 
compared with coupled climate model simulations from CMIP6. The 
model simulations are a combination of the historical simulation until 
2014 combined with a SSP5- 8.5 scenario from 2015 onward. The 
SSP5- 8.5 scenario includes reductions in aerosols combined with a 
strong increase in GHG concentrations. The CERES data show a stron-
ger trend in EEI than the multimodel CMIP6 mean and higher EEI in 
2023 than any of the CMIP6 models. However, for individual CMIP6 
models and ensembles, EEI is comparable to or higher at other periods 
than the CERES value in 2023. Interannual variability in EEI is clearly 
shown for the CERES data and the climate models. In simulations with 
observed SST, the interannual variability in the CERES data is largely 
reproduced by the climate models (16).

The strengthened EEI from CERES is further supported by an ac-
celerated trend in the ocean heat content (OHC) (14,  20–22). 
Discrepancies exist in the degree of acceleration among various OHC 
datasets, with best agreement between CERES and OHC datasets hav-
ing better ocean coverage and filling in data in data- sparse regions (23).

Relationship of LW and SW EEI trend
To illustrate climate model differences and robustness between mod-
els, we use idealized CMIP6 experiments. In Fig. 2, the EEI is shown 
for a range of models for the experiment with a 1%/year increase in 
CO2 concentrations (named 1pctCO2). All models show an increasing 
net EEI (Fig. 2A) but with a much larger model diversity when net EEI 
is split into LW (Fig. 2B) and SW EEI (Fig. 2C). LW and SW EEI are 
positive when reducing outgoing radiation at the top of the atmo-
sphere, typically caused by an increase in absorption by GHGs (both 
anthropogenic and as climate feedback). An increase in surface tem-
perature causes an increase in outgoing LW radiation and thus a nega-
tive LW EEI. The majority of models have a negative LW EEI after 
some years because the increase in surface temperature and more 
outgoing LW radiation overwhelm the positive effect from the increase 
in CO2. However, several models have a positive or very weak LW EEI 
even after more than 100 years. With one exception, the models have 
a positive SW EEI mostly throughout the time period of increase in 
CO2 caused by less snow and ice (24) and contributions from water 
vapor absorption (25) and clouds for several models (see discussions 
in next sections). Figure 2D shows the trend in LW EEI versus SW EEI 
for the CMIP6 models, with uncertainties reflecting variation among 
four 23- year periods over the model simulations. Consistent with 
Schmidt et al. (18), we find a robust linear relationship in the LW and 
SW EEI trends among model members and a marked spread in the 
trends. Periods of 23 years are selected to match the length of data 
available from CERES.

Linking trends in EEI with climate sensitivity
Figure 3A shows the 1pctCO2 experiment and the abrupt quadrupling 
of CO2 (abrupt- 4xCO2) experiment, with colors reflecting the ECS. The 
LW and SW EEI trends are calculated as a mean of four 23- year trends 
and ECS from regressions using the abrupt- 4xCO2 experiment over 
150 years (26) and thus consistent with ECS values derived elsewhere 
(4, 27). The 1pctCO2 and abrupt- 4xCO2 experiments show different 
trend relationships for LW and SW EEI, with the former having a 
weaker LW negative trend gradient as a sustained increase in CO2 
contributes to LW EEI imbalance. The shading in Fig. 3A shows that 
the net EEI is generally increasing in the 1pctCO2 experiment and 
decreasing in the abrupt- 4xCO2 experiment. Figure 3A also includes 
atmosphere- only simulations with observed SST fields from 2001 to 
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2019 from Hodnebrog et al. (16). Atmosphere- only simulations in 
which climate drivers (GHGs and aerosols) have been kept constant 
for the period 2001 to 2019 align with the abrupt- 4xCO2 experiment, 
and atmosphere- only simulations with an increase in GHGs (but con-
stant aerosols) over the 2001 to 2019 period show LW and SW trends 
similar to those of the 1pctCO2 experiment. Notably, the low climate 
sensitivity models have much weaker changes in LW and SW EEI 
trends than the other models. In particular, the models with ECS below 
2.5 K all show very weak LW and SW EEI trends. For models with an 
ECS of 4 K or higher, there is little alignment with the LW and SW EEI 
trends, and the models are widely spread along the regression line. 
Nevertheless, it is notable that none of these models show very weak 
LW and SW EEI trends.

In Fig. 3B, the CERES satellite LW and SW EEI trend is shown to-
gether with the CMIP6 intramodel ensemble mean LW and SW EEI 
trend for the period 2001 to 2023. CMIP6 simulations are from a 
combination of the historical simulation until 2014 and the SSP5- 8.5 
scenario from 2015. Results are very similar for other scenarios with 
aerosol reductions (e.g., SSP2- 4.5). Additionally, atmosphere- only 
simulations with changes in GHG and aerosols from Hodnebrog et al. 
(16) are included in Fig. 3B; note that these are for the period 2001 to 
2019. The number of ensemble members for each model is quite 
variable (table S1). Figure 3C shows results for all ensemble members 
included in this study. Figure 3, B and C, show systematic weak LW 
and SW EEI trends from low climate sensitivity models, consistent 
with Fig. 3A. Note that the relationship between climate sensitivity 

and net EEI trends shows no systematic pattern, and 
various intramodel ensemble members exhibit a wide 
range in the net EEI trend (fig. S1). All models with 
climate sensitivity below 2.5 K have very weak LW and 
SW EEI trends. It is worth mentioning some of the EEI 
trends of lighter colors in Fig. 3, B and C. FGOALS- f3- L 
has a LW EEI trend similar to that of CERES and a SW 
EEI trend 0.2 W m−2/decade weaker than that of 
CERES, but this model has a climate sensitivity of 3.0 K 
(Fig. 3B). In Fig. 3C, one ensemble member out of 50 
for MIROC6 has a SW EEI trend above 0.4 W m−2/
decade. MIROC6 has a climate sensitivity of 2.6 K. 
GISS- E2- 2- G is among the very low climate sensitivity 
models, with an ECS of 2.4 K, and has one out of five 
ensemble members with a SW EEI trend above 0.4 W 
m−2/decade (0.41) but with a near- zero LW EEI. The 
atmosphere- only simulations in Fig. 3B are closer to 
CERES LW and SW EEI trends than the fully coupled 
simulations of the same model. This can be illustrated 
by HadGEM3, which shows slightly weaker trends than 
CERES where observed SST is used, and much stronger 
trends in the coupled simulations. Similarly, NorESM2 

0 50 100 150
−2
−1

0

1

2

3

4
5

E
E

I [
W

 m
−

2 ]

A

0 50 100 150
−10

−5

0

5

LW
 E

E
I [

W
 m

−
2 ] B

0 50 100 150
Years

−5

0

5

10

15

S
W

 E
E

I [
W

 m
−

2 ]

C

−1.0 −0.5 0.0 0.5
LW EEI [W m−2/dec]

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S
W

 E
E

I [
W

 m
−

2 /d
ec

]

ACCESS−CM2
ACCESS−ESM1−5
AWI−CM−1−1−MR
BCC−CSM2−MR
CAMS−CSM1−0
CanESM5
CESM2
CESM2−WACCM
CIESM
CNRM−CM6−1
CNRM−ESM2−1
EC−Earth3
EC−Earth3−Veg
E3SM−1−0
FGOALS−f3−L
FGOALS−g3
FIO−ESM−2−0
GFDL−CM4
GFDL−ESM4
GISS−E2−1−G
GISS−E2−1−H
GISS−E2−2−G
HadGEM3−GC31−LL
IITM−ESM
INM−CM4−8
INM−CM5−0
IPSL−CM6A−LR
KACE−1−0−G
MIROC6
MPI−ESM1−2−HR
MPI−ESM1−2−LR
MRI−ESM2−0
NESM3
NorESM2−LM
NorESM2−MM
TaiESM1
UKESM1−0−LL

D

Fig. 2. EEI in CMIP6 models of 1%/year increase in CO2 (1pctCO2). Net EEI (A), LW EEI (B), SW EEI (C), and SW EEI versus LW EEI trends where trends are derived from four 
23- year intervals (D). Uncertainty ranges shown in (D) represent the standard deviation among the four 23- year intervals.

2000 2010 2020 2030
−1

0

1

2

3

E
E

I [
W

 m
−

2 ]

CERES CMIP6

Fig. 1. Trend in EEI in CERES and CMIP6 models. The CERES data are shown from 2001 to 2023. The 
CMIP6 data are shown from 2000 to 2030. All EEI are given as 12- month running means. CMIP6 model 
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aligns better with CERES data when using observed SST simulations, 
showing stronger LW and SW EEI trends than in fully coupled simula-
tions. However, differences with CERES are also evident among model 
simulations using observed SSTs, indicating that both the atmo-
spheric and ocean components of the climate models contribute to 
differences in the LW and SW EEI trends.

Clear- sky LW and SW EEI trends show similar patterns to all- sky 
trends, with strong negative LW EEI trends for high climate sensitivity 
models and positive SW EEI trends in idealized CMIP6 experiments 
(fig. S2). The largest difference between the clear- sky and all- sky results 
are for SW EEI trends (Fig. 3A and fig. S2).

EEI trends and surface warming
The surface temperature warming differs substantially between the 
CMIP6 models, and Fig. 4 (and fig. S3 and fig. S4) investigates whether 
this alters the relationships shown in Fig. 3. The most notable result 
is that the CERES data show a higher SW EEI trend per degree warm-
ing than any of the CMIP6 models, and only the models with a strong 
negative LW EEI trend per degree warming are close to CERES (Fig. 4). 
The low climate sensitivity models have consistently much weaker LW 
and SW EEI trends per degree warming than the CERES data.

Discussion
The analysis above relates to models’ long- term climate sensitivity 
estimated from abrupt 4xCO2 experiments. This can differ from their 
effective climate sensitivity, estimated from changes over the recent 
historical period. Previous studies find that climate models are unable 
to capture the recent pattern of East Pacific warming observed (28), 
and this is associated with reduced effective feedbacks and reduced 
effective climate sensitivity (12). Hodnebrog et al. (16) find that apply-
ing SST patterns to models improves EEI trends across models. When 
comparing the observed SST simulations (triangles) to their coupled 
modeled counterparts (circles) in Fig. 3B, low- sensitivity models such 
as NorESM exhibit relatively modest differences in the EEI trends and 
remain well below the CERES trend even with the observed SST pat-
tern applied. Hence the particular observed SST pattern is unlikely to 
play a large role for the low climate sensitivity models, substantially 
underestimating the LW EEI and SW EEI trends compared to CERES.
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Fig. 3. SW EEI versus LW EEI trends and their relation to climate sensitivity in 
CMIP6 models. Primary ensemble member from each CMIP6 model for the 
abupt- 4xCO2 and 1pctCO2 experiments with results from Hodnebrog et al. (16)  
on all driver constants (following abupt- 4xCO2) and only GHG changes included 
(following 1pctCO2) (A); CERES and ensemble mean from each CMIP6 models 
(historical+SSP5- 8.5) for 2001 to 2023 with results from Hodnebrog et al. (16) shown 
in gray colors for the period 2001 to 2019 (see further description in supplementary 
text) (B); and CERES and all individual ensemble members from CMIP6 models for 
2001 to 2023 (C). The range of ECS in the CMIP6 models is from 1.9 to 5.6 K. In (A), 
the 1pctCO2 simulations have thicker lines around the circles than the abrupt- 4xCO2 
simulations. Yellow- gray shaded area in (A) shows where net EEI trend is negative. 
Lines around the CERES trends are 90% confidence intervals.
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Climate models consistently show a robust feature of a relationship 
between LW EEI and SW EEI trends, which varies depending on cli-
mate drivers involved in the simulations (Fig. 3, A and B). This rela-
tionship is also evident under clear- sky conditions (see fig. S2), where 
the positive SW EEI trend often is modest and driven by reduced 
surface albedo from less snow and ice in addition to contributions 
from SW absorption by water vapor. The negative LW EEI trend is 
driven by surface temperature increase and moderated if GHGs are 
increasing during the simulations. Cloud changes further amplify the 
clear- sky relationship between LW EEI and SW EEI trends. Figure S5 
shows previously derived SW and LW cloud feedbacks (27) that exhibit 
a similar shape of relationship to that of LW EEI and SW EEI trends 
but slightly different gradient. Notably, SW cloud feedback demon-
strates greater model diversity than LW cloud feedback, although the 
latter also shows substantial variability. A negative correlation between 
LW and SW cloud feedbacks can be expected as a result of the opposing 
warming and cooling effect of clouds on the climate system (29).

We show, using a large set of climate models, that trend in net EEI 
has no clear relationship to climate sensitivity. Consequently, we argue 
that the trends in net EEI and surface warming trend over the first 
two decades of this century provide little constraint on climate sensi-
tivity. However, we present robust findings for trends in LW and SW 
EEI. These trends, and their relationship to climate sensitivity, are 
more physically based than the net EEI trend. The model distribution 
of EEI trends compared to CERES is shown in fig. S6. All models, given 
as the 99.999% level of the distribution, with an ECS of 2.93 K or below, 
are outside the CERES range. The models have a positive aerosol radia-
tive forcing trend similar to that observed, around 0.16 W m−2 per 
decade (16, 30). This would need to be underestimated by at least 50% 
to make the SW EEI trend from models with an ECS of 2.5 K match 
the CERES range, making such a low ECS unlikely.
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